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Abstract. Evolutionary Algorithms (EAs) are a useful tool to tackle
real-world optimisation problems. Two important features that make
these problems hard are multimodality and high dimensionality of the
search landscape.
In this paper, we present a real-parameter Genetic Algorithm (GA) which
is effective in optimising high dimensional, multimodal functions. We
compare our algorithm with two previously published GAs which the
authors claim gives good results for high dimensional, multimodal func-
tions. For problems with only few local optima, our algorithm does not
perform as well as one of the other algorithm. However, for problems with
very many local optima, our algorithm performed significantly better. A
wider comparison is made with previously published algorithms showing
that our algorithm has the best performance for the hardest function
tested.

1 Introduction

Many real-world optimisation problems, particularly in engineering design, have
a number of key features in common: the parameters are real numbers; there are
many of these parameters; and they interact in highly non-linear ways, which
leads to many local optima in the objective function. Clearly it is useful to
have optimisers that are effective at solving problems with these characteristics.
It has been shown elsewhere [1] that Genetic Algorithms (GAs) are good at
solving multimodal functions. In this work, we describe and demonstrate a GA
that appears to be good at solving problems where the objective function is
characterised as being: high dimensional; real variable; continuous and smooth;
many local optima.

Deb et al. [2] have recently produced a comprehensive review of optimisation
methods. They included in their study: real parameter GAs, Self-Adaptative ESs
(Evolution Strategies), DE (Differential Evolution) and GMs (Gradient Meth-
ods). All of these methods were tested on a set of high dimensional analytical
test functions. They concluded that a real-parameter GA known as G3-PCX
had the best overall performance. It is worth noting that G3-PCX was shown
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to have better convergence than GMs on some unimodal functions. G3-PCX
also obtained the best results, in the published literature, for the Schwefel and
Rosenbrock functions. An excellent result on the Rastrigin function was also
reported.

Ballester and Carter [1] investigated the performance of a variety of GA for-
mulations over a set of 2-variable multimodal functions. It was found that GAs
which used random selection with crowding replacement strategies were robust
optimisers. The same authors showed [3] that one of those GAs (named SPC-
vSBX) was also effective in optimising high dimensional real-variable functions.
Of particular importance were the results obtained with the Rastrigin and ro-
tated Rastrigin functions, the hardest of all tested in terms of number of local
minima. On these functions, SPC-vSBX achieved the best performance, starting
with a skewed initialisation, reported in the literature. A version of SPC-vSBX
has been also successful in a real-world optimisation problem [4]. The algorithm
was applied to the direct inversion of a synthetic oil reservoir model with three
free parameters. In experiments where the optimal model was a priori known, it
was observed that the algorithm was able to find the global minimum

In this paper, a new family of crossovers is presented which, unlike vSBX, are
not biased with respect to the coordinate directions. One of this crossovers will
be studied in combination with the SPC model. A benchmark will be set up to
test the behaviour of the new algorithm together with G3-PCX and SPC-vSBX.
This benchmark consists of a set of analytical test functions that are known to
be difficult to many optimisation algorithms. These functions have been widely
used, which will allow a wider comparison with previously published studies.

We arrange the rest of the paper as follows. Section 2 discusses the approach
to testing algorithms. Section 3 describes the structure of the proposed GA.
In Sect. 4, the experimental setup is explained. Results are presented and a
comparison with G3-PCX and SPC-vSBX made in Sect. 5. Section 6 reviews the
presented results with respect to past studies. Lastly, we present our conclusions
and discuss future work in Sect. 7.

2 Testing Algorithms on Analytical Functions

When tackling a real-world problem, the conventional approach is to test first the
algorithm on a set of analytical functions. Most real-world applications involve
objective functions considerably more expensive to evaluate than an analytical
one. Consequently, it is usually unviable to test the effectiveness of an algorithm
directly on the real problem. There is the assumption that the chosen set of
functions share some characteristics with the target problem. Based on this as-
sumption, one applies the algorithm that performed well on the benchmark in
the expectation that it will do also well on the real-world problem.

This approach to evaluating algorithms is not without drawbacks. As pointed
out by Whitley et al. [5], there is the potential danger that algorithms ‘become
overfitted to work well on benchmarks and therefore that good performance on
benchmarks does not generalize to real world problems’. An example of this is
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algorithms that exploit benchmark symmetries unlikely to be present on the
target problem. For instance, many algorithms are tested by initialising the
population symmetrically around the global optimum. The algorithm might have
an inherent tendency to create children near the centroid of the parents (eg.
mean-centric recombination in GAs). Deb et al. [2] argued that this is unfair
since: ‘a mean-centric recombination of two solutions at either side of xj =
0 is likely to result in a children near xj = 0. Moreover, in most real-world
problems, the knowledge of the exact optimum is usually not available, and the
performance of an Evolutionary Algorithm (EA) on a symmetric initialisation
may not represent the EA’s true performance in solving the same problem with
a different initialisation or other problems’. Consequently it is important that
algorithms are tested with skewed initialisations, so as to give a better indication
of their performance on real-world problems. There are a number of additional
studies that have also pointed out the need of using a skewed initialisation [6,
7,8,9,10,3]. In this work, we have chosen a skewed initialisation that does not
bracket the global minimum. This has been done to test the algorithms under the
hardest situation. However, we feel that an initialisation bracketing the global
minimum, but in a sufficiently asymmetrical way, is also a valid approach.

A different example of a bias that results in improved performance is given by
Ballester and Carter [3]. In that study, the vSBX crossover was used. vSBX has a
preference for searching along the coordinate directions. It was pointed out that
this may give the GA an advantage on test functions with minima aligned with
the axis. The latter is a property of the Rastrigin function. The algorithm success
in solving a 50-variable Rastrigin could have benefitted from this characteristic.
Consequently, the authors introduced a rotation in the function to neutralise
the algorithm’s advantage. A significantly inferior performance on the rotated
Rastrigin was reported.

3 GA Description

Our real parameter GA uses a steady state population model. In each genera-
tion, two parents are selected from the current population to produce λ children
through crossover. Offspring and current populations are then combined so that
the population remains at a constant size.

This GA combines the following features: parental selection is not fitness
biased, a self-adaptative unbiased crossover operator, implicit elitism and lo-
cally scaled probabilistic replacement. We will refer to this GA as SPC-PNX
(Scaled Probabilistic Crowding Genetic Algorithm with Parent Centric Normal
crossover). Below we describe the details of SPC-PNX selection, replacement
and crossover schemes:

3.1 Selection

We use uniform random selection, without replacement, to select two parents
from the current population. Unusually for a GA, fitness is not taken into account
during the selection process.
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3.2 Scaled Probabilistic Crowding Replacement

We use a scaled probabilistic crowding scheme for our replacement policy. First,
NREP individuals from the current population are selected at random. These
individuals then compete with the offspring for a place in the population.

In the probabilistic crowding scheme [11], the closest preselected individual
(xcst) enters a probabilistic tournament with the offspring (xofp), with culling
likelihoods (survival, if we were in a maximisation problem) given by

p(xofp) =
f(xofp)

f(xofp) + f(xcst)
, p(xcst) =

f(xcst)
f(xofp) + f(xcst)

. (1)

where f(x) is the objective function value for an individual x.
If the differences in function values across the population are small with

respect to their absolute values, these likelihoods would be very similar in all
cases. The scaled probabilistic crowding replacement is introduced to avoid this
situation. It operates with culling likelihoods

p(xofp) =
f(xofp) − fbest

f(xofp) + f(xcst) − 2fbest
, p(xcst) =

f(xcst) − fbest

f(xofp) + f(xcst) − 2fbest
.

(2)

where fbest is the function value of the best individual in the offspring and
selected group of NREP individuals.

This replacement scheme has several beneficial features. The fittest individual
does not always win, which helps to prevent premature convergence. Crowding
schemes such as this promote the creation of subpopulations that explore differ-
ent regions of the search space. This has been shown [1] [3] to be beneficial for
creating multiple optimal solutions and to increase the effectiveness in finding
the global minimum. It implements elitism in an implicit way. If the best indi-
vidual in either offspring or current parent population enters this replacement
competition will have probability zero of being culled.

3.3 Crossovers

In this work, we test two crossovers in combination with the SPC model: a version
of the Simulated Binary Crossover (SBX) [12] [13] called vSBX [1] [3] and a new
crossover called PNX. These crossovers are self-adaptative in the sense that the
spread of the possible offspring solutions depends on the distance between the
parents, which decreases as the population converge.

In SBX, children have zero probability of appearing in some regions of the
parameter space, as shown in Fig 1. vSBX does not exclude any regions, while
preserving the good SBX properties. This may allow a better exploration of the
search space. It should be noted that SBX and vSBX preferentially search along
the coordinate directions. This may give an advantage on test functions where
minima are aligned along coordinate directions.
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Fig. 1. Children bred from parents x(1) = (1, 1) and x(2) = (3, 3) for (clockwise starting
from upper left plot) a) SBX (η = 1), b) vSBX (η = 1), c) PNX (η = 3) and d) PNX
(η = 2)

Like vSBX, PNX does not exclude any regions, while creating offspring close
to the parents. However, unlike SBX and vSBX, PNX does not preferentially
search along the axis and hence it is not biased towards coordinate directions.
In PNX, for each of the λ children, we proceed as follows to determine its jth

gene (yj). First, we draw a single random number w ∈ [0, 1], we use the form
y
(1)
j if w < 0.5 and y

(2)
j if w ≥ 0.5. Once this choice is made, the same selected

form is used for every component j. The forms are

y
(1)
j = N(x(1)

j , |x(2)
j − x

(1)
j |/η), y

(2)
j = N(x(2)

j , |x(2)
j − x

(1)
j |/η) . (3)

where N(µ,σ) is a random number drawn from a gaussian distribution with mean
µ and standard deviation σ, x

(i)
j is the jth component of the ith parent and η is

a tunable parameter. The larger is the value of η the more concentrated is the
search around the parents.

4 Experimental Setup

We use the same experimental setup as in Deb et al. [2], allowing a direct com-
parison with their results. The stopping criteria are: either a maximum of 106

function evaluations or an objective value of 10−20 is obtained.
Our benchmark consists in six analytical 20-variable functions: ellipsoidal

(felp), Schwefel (fsch), Generalized Rosenbrock (fros), Ackley (fackl), Rastrigin
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(frtg) and a rotated Rastrigin function (frrtg). Views of the two-dimensional
versions of these functions are given in Figs. 2 to 7.
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Fig. 2. Initialisation (left) and global minimum (right, inverted view) for the Ellipsoidal
function. felp(x) =
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Fig. 3. Initialisation (left) and global minimum (right, inverted view) for the Schwefel

function: fsch(x) =
∑M

j=1

( ∑j
k=1 xk

)2

These functions were selected for several reasons. First, they have been widely
used, which will allow an extensive comparison with previously published algo-
rithms. Also, these functions have a number of features that are known to be
hard for optimisation algorithms and believed to be present in many real-world
problems. The Ellipsoidal is a unimodal function with different weights for each
variable. This will serve to test the algorithms with a badly scaled objective func-
tion. The Schwefel function is also unimodal, but its variables are correlated. The
Generalized Rosenbrock has been regarded as a unimodal function, but there is
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j − xj+1)2 + (xj − 1)2)
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Fig. 5. Initialisation (left) and global minimum (right, inverted view) for the Ackley
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Fig. 7. Initialisation (left) and global minimum (right, inverted view) for the Rotated
Rastrigin function: frrtg(y) = 10M +

∑M
j=1(y

2
j − 10 cos(2πyj)), y = Ax with Aj,j =

4/5, Aj,j+1 = 3/5 (j odd), Aj,j−1 = −3/5 (j even), Aj,k = 0 (the rest)

evidence [2] suggesting that it contains several minima in high dimensional in-
stances. This will test the behaviour of the algorithm with objective functions
having a couple of minima and an almost flat region near the global. The Ackley
function is highly multimodal. The basin of these local minima increase in size as
one moves away from the global minimum, as discussed by [8]. Thus, this func-
tion will be useful to study the behaviour of the algorithms when initialised in
a highly multimodal region. In the Rastrigin function, the opposite is observed.
Away from the global minimum, the landscape has a parabolic structure. As we
move towards the global minimum, the size of the basins increase [8]. Therefore,
an algorithm has to discard many local minima of similar quality before reach-
ing the global minimum. This is known to be difficult for many optimisation
algorithms, specially in high dimensional Rastrigin instances. Lastly, a rotation
is carried out on the Rastrigin to make it non-separable, while still being highly
multimodal. The resulting rotated function has no longer local minima arranged
along the axis. The rotated Rastrigin function is expected to help to avoid overes-
timating the performance of algorithms using separable objective functions. All
functions have a single global minimum with value zero. The global minimum is
located at xj = 1 (Rosenbrock) or xj = 0 (the rest).

As an experiment has some dependence on the initial conditions, we repeat
each experiment, each time with a different initial population. We do not ini-
tialise the population symmetrically around the global minimum, all variables
are initialised at random within [−10,−5]. The purpose of this skewed initialisa-
tion is two fold. First, it ensures that the algorithms generally have to overcome
a number of local minima before reaching the global minimum. Second, it neu-
tralises the advantage enjoyed by algorithms that have an inherent tendency to
create solutions near the centroid of the parents.
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5 Discussion of the Results

SPC-vSBX and SPC-PNX contain four tunable parameters: N, λ, NREP and
η. In this study, we fix η = 0.01 (for vSBX), η = 2.0 (for PNX) and NREP=2.
G3-PCX’s results for the Ellipsoidal, Schwefel, Generalized Rosenbrock and Ras-
trigin are extracted from the original study [2]. For the rest of functions, we use
the G3-PCX code downloaded from the KanGAL website [14]. The procedure
consists in doing some preliminary runs to determine the best N and λ for each
function. Due to the limited computing precision, the accuracy for the Ackley
function was set as 10−10.

In Table 1, we compare G3-PCX, SPC-vSBX and SPC-PNX. G3-PCX re-
ports the best results in the literature for the Schwefel and Generalised Rosen-
brock. It also obtained an excellent result for the Rastrigin starting with a
skewed initialisation. For the Ellipsoidal, only a Gradient Method (the BFGS
quasi-Newton algorithm with a mixed quadratic-cubic polynomial line search
approach achieved a solution in the order of 10−24 in 6, 000 function evalua-
tions [2]) was shown to outperform it. Over the unimodal functions SPC-vSBX
and SPC-PNX are not competitive in terms of number of function evaluations,
although they reached the required accuracy in all runs.

In the 20-variable Rosenbrock function, there are two known local minima [2]
with function values of 3.986624 and 65.025362. G3-PCX found solutions better
than 10−20 in 36 out of 50 runs, but in the other 14 got stuck in the best local
minimum. SPC-vSBX only found a best solution of 10−4 in 50 runs. It found
solutions below the best local minimum (ie. within the global basin) in 48 out of
50 runs. SPC-PNX found a best solution of 10−10 in 50 runs. It found solutions
below the best local minimum in 38 out of 50 runs. By incrementing N, SPC-
PNX reached the global basin in 47 out of 50 runs. Since the SPC model is not
strongly fitness biased, we conjecture that the slow convergence observed is due
to the function’s flat regions.

In the 20-variable Ackley function, G3-PCX was not able to find the global
basin in any of the ten runs, finding a best value of 3.959. In most of the runs, the
algorithm could not escape the highly multimodal initialisation region. Whereas
SPC-vSBX and SPC-PNX found the global minimum in all runs, with SPC-PNX
outperforming SPC-vSBX in terms of required number of evaluations.

In the 20-variable Rastrigin function, SPC-vSBX could find a solution better
than 10−20 in 6 out of 10 runs, whereas G3-PCX was reporting an overall best
solution of 15.936 within the prescribed limits. In the other 4 runs, SPC-vSBX
always found one of the best local minima with value 0.9949591. However, the
authors of this algorithm warned that vSBX may benefit of an advantage when
applied to the Rastrigin function because of its preferential search along the axis.
To neutralise this advantage, SPC-vSBX was tested on the rotated Rastrigin
function and a best value of 8.955 was found, whereas a best value of 309.429
was reported with G3-PCX. By contrast, SPC-PNX found best values of 4.975
and 3.980 for the Rastrigin and rotated Rastrigin, respectively.

It has been generally observed that by incrementing N, in both SPC-vSBX
and SPC-PNX, better results are found at a cost of taking longer to converge.
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Table 1. Performance comparison between G3-PCX, SPC-vSBX and SPC-PNX over
the test functions. The best, median and worst columns refer to the number of function
evaluations required to obtain a value of 10−20. If the target is not reached then the best
found function value within 106 evaluations is given. ‘Success’ refers to how many runs
reach the target accuracy (unimodal) or end up within the global basin (multimodal).
The latter is determined by checking if the best found solution is below the function’s
best local minimum. ‘?’ accounts for information not specified in the original study [2].

Model Crossover (N,λ) Function Best Median Worst Best Found Success
G3 PCX-(0.1,0.1) (100,2) Elp 5,826 6,800 7,728 10−20 10/10

SPC vSBX-0.01 (6,1) Elp 49,084 50,952 57,479 10−20 10/10
SPC PNX-2.0 (35,1) Elp 36,360 39,360 40,905 10−20 10/10
G3 PCX-(0.1,0.1) (150,2) Sch 13,988 15,602 17,188 10−20 10/10

SPC vSBX-0.01 (6,1) Sch 260,442 294,231 334,743 10−20 10/10
SPC PNX-2.0 (35,1) Sch 236,342 283,321 299,301 10−20 10/10
G3 PCX-(0.1,0.1) (150,4) Ros 16,508 21,452 25,520 10−20 36/50

SPC vSBX-0.01 (12,1) Ros 106 - - 10−4 48/50
SPC PNX-2.0 (35,1) Ros 106 - - 10−10 38/50
SPC PNX-2.0 (80,1) Ros 106 - - 10−6 47/50
G3 PCX-(0.1,0.1) (150,2) Ackl 106 - - 3.959 0

SPC vSBX-0.01 (8,1) Ackl 57,463 63,899 65,902 10−10 10/10
SPC PNX-2.0 (50,1) Ackl 45,736 48,095 49,392 10−10 10/10
G3 PCX-(?,?) (?,?) Rtg 106 - - 15.936 0

SPC vSBX-0.01 (20,3) Rtg 260,658 306,819 418,482 10−20 6/10
SPC vSBX-0.01 (40,3) Rtg 639,102 721,401 800,754 10−20 10/10
SPC PNX-2.0 (400,4) Rtg 106 - - 4.975 0
G3 PCX-(0.1,0.1) (300,3) Rot. Rtg 106 - - 309.429 0

SPC vSBX-0.01 (75,3) Rot. Rtg 106 - - 8.955 0
SPC PNX-2.0 (400,4) Rot. Rtg 106 - - 3.980 0

Also, a restricted search (through a higher value of η) seems to be beneficial in
the highly multimodal functions. Based on these observations, we investigate the
performance of SPC-PNX with different combinations of N, λ and η, allowing
a higher number of function evaluations and using the same initialisation. As
a result, we solved the 20-variable Rastrigin (N=2, 000, λ = 4, PNX-3.0 and
2·106 evaluations, obtaining a function value of 3.634·10−12) and the 20-variable
rotated Rastrigin (N=2, 500, λ = 3, PNX-3.0 and 2.25·106 evaluations, obtaining
a function value of 2.438 · 10−2).

6 Review of Results with Respect to Other Studies

In this section, other previous studies reporting results on the used test func-
tions are reported. This will allow a wider comparison with previously published
studies.
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Eiben and Bäck [7] used an (µ, λ)-ES to optimise 30-variable Schwefel, Ackley
and Rastrigin functions. On the Schwefel, the ES was initialised within [60,65]
and a best solution greater than 1.0 was reported. The initialisation for the Ack-
ley function was [15,30] and the best found values was greater than 10−13. The
Rastrigin was initialised within [4,5] and a solution better than 10.0 was reported.
Storn and Price [15] used DE on a testbed including Ackley and Rastrigin func-
tions with symmetric initialisations. The 30-variable Ackley, 100-variable Ackley,
20-variable Rastrigin and 100-variable Rastrigin functions were solved. However,
as the authors admit for these multimodal functions: ‘As many symmetries are
present, the main difficulty of these test functions lies in their dimensionality’.
Chellapilla and Fogel [8] solved the 10-variable Rastrigin and Ackley functions
starting from [8,12]. Compared to a symmetric initialisation, this study showed
negative improvement in best function values with the skewed initialisation.
Patton et al. [9] used also a skewed initialisation (but bracketting the global
minimum) and solved the 10-variable instances of the Schwefel, Rosenbrock,
Ackley and Rastrigin. Wakunda and Zell [16] apply a number of CMA-ESs (Co-
variance Matrix Adaptation Evolutionary Strategies) and solved the 20-variable
Ellipsoidal, Schwefel, Rosenbrock and Ackley functions. As the initialisation was
not stated, it is not possible to compare with these results. Kita [17] using a
real-parameter GA (known as MGG-UNDX) and a ES solves the 20-variable
Rosenbrock function. Also, the symmetric initialisation [-5.12,5.12] was used to
solve a 5-variable rotated Rastrigin. Hansen and Ostermeier [18] applied a CMA-
ES to the Ellipsoidal, Schwefel, Rosenbrock and Rastrigin. Starting from a unit
away from the global minimum, the Ellipsoidal, Schwefel and Rosenbrock func-
tions were solved with up to 320 variables. The algorithm was applied on the
20-variable Rastrigin. Starting with a solution initialised in [-5.12,5.12], function
values within 30.0 and 100.0 were found.

7 Conclusions and Future Work

We have presented a GA (SPC-PNX) which has been shown to be effective in
optimising high dimensional real-variable functions. This algorithm incorporates
the new parent-centric crossover PNX (Parent-centric Normal Crossover).

SPC-PNX’s performance has been tested on a set of high dimensional real-
variable functions. These functions have a number of features that are known
to be hard for optimisation algorithms and believed to be present in many real-
world problems. By using PNX instead of vSBX, a better convergence was ob-
tained while maintaining practically the same average performance. This was
observed for all test functions but the Rastrigin, where SPC-vSBX is known
to enjoy an advantage. In comparison with G3-PCX, SPC-PNX does not per-
form as well as this algorithm for problems with few local minima. However, for
problems with very many local optima, our algorithm performed significantly
better. In the hardest test function (rotated Rastrigin) in terms of separabil-
ity and multimodality, SPC-PNX widely overcomes the performance previously
reported.
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In future work, we will investigate the effect of varying the parameter NREP,
which seems to affect the ability of maintaining several subpopulations during
the GA run. Also, we plan to apply it to carry out the calibration of the model
parameters corresponding to a real petroleum reservoir.
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